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Dialogue acts represent the meaning of an utterance by the speech act it carries out (Austin
and Urmson, 2009). Dialogue act recognition (DAR) is the task of automatically labeling
utterances with tags from a dialogue act schema such as DAMSL (Core and Allen, 1997).

Dialogue acts depend on their conversational context. For example, a speaker may use
okay to agree with their interlocutor, answer a yes-no question in the affirmative, or simply
acknowledge the previous utterance, depending on what has transpired in the conversation
so far. Naturally, many DAR strategies attempt to model discourse context in addition to
considering the content of the utterance in question. Stolcke et al. (2000), for example, use a
Hidden Markov Model to tag dialogue acts. The hidden state of neural sequence models can
also be used to represent discourse context (e.g. Kalchbrenner and Blunsom, 2013; Tran et al.,
2017).

It is now standard practice in NLP to initialize semantic word representations with pre-
trained distributional word vectors such as word2vec (Mikolov et al., 2013). More recently,
multi-layer neural language models pre-trained on massive amounts unlabeled data have been
used to provide contextually sensitive word vectors and sentence-level distributional represen-
tations. One such model, BERT, uses an attention-based transformer architecture to achieve
state of the art results on a variety of NLP tasks (Devlin et al., 2018).

However, given that BERT is pre-trained on book and encyclopedia data, there is no guaran-
tee it will improve performance on dialogue-specific tasks. Adding to that uncertainty, we note
that word2vec is not consistently beneficial for DAR (Cerisara et al., 2017). To assess BERT’s
potential for dialogue applications, we propose a series of DAR experiments with various ut-
terance encoders, including BERT. Utterance representations are then fed to a simple RNN to
predict sequences of dialogue acts (figure 1). In particular, we are interested in whether BERT
can be fine-tuned to adequately represent dialogue-specific features such as discourse markers,
disfluencies, and non-verbal vocalizations such as laughter.
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RNN RNN . . . RNN

E E . . . E

x00, x
0
1, ..., x

0
n0

x10, x
1
1, ..., x

1
n1

. . . xT0 , x
T
1 , ..., x

T
nT

h0 h1 hT−1

Figure 1: Simple neural DAR model. Utterance t with tokens x0, ..., xnt is encoded by E, then
passed as input to the RNN. The RNN’s hidden state, ht− 1 models the discourse context at
utterance t. The output layer of the RNN predicts the dialogue act, Ŷt.
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Experiments. Our aim is to test the effectiveness of different utterance encoding strategies.
We investigate the following strategies:

1. Averaging of word2vec/BERT word embedding

2. Encoding utterances with CNN (with/without word2vec/BERT initalization, with/without
‘freezing’ the embeddings)

3. BERT encoded sentences (with/without additional unsupervised pretraining on the full
Switchboard corpus)

Pre-trained models benefit from learning on large amounts of online data, however it might
be the case that for DAR, additional information only present in natural dialogue data will
be useful. In SWDA disfluencies are annotated and for the datasets where no annotation for
disfluencies is available, they can be predicted from recognized speech (Hough and Schlangen,
2017; Shalyminov et al., 2018). We evaluate the impact of disfluencies and non-verbal signals,
such as laughter, on the performance of our models and suggest the ways to include information
about disfluencies into pre-trained neural models.
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